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The Evaluated Nuclear Data File (ENDF) format was designed in the 1960s to accommodate
neutron reaction data to support nuclear engineering applications in power, national security and
criticality safety. Over the years, the scope of the format has been extended to handle many
other kinds of data including charged particle, decay, atomic, photo-nuclear and thermal neutron
scattering. Although ENDF has wide acceptance and support for many data types, its limited
support for correlated particle emission, limited numeric precision, and general lack of extensibility
mean that the nuclear data community cannot take advantage of many emerging opportunities.
More generally, the ENDF format provides an unfriendly environment that makes it difficult for
new data evaluators and users to create and access nuclear data.

The Cross Section Evaluation Working Group (CSEWG) has begun the design of a new Gen-
eralized Nuclear Data (or ‘GND’) structure, meant to replace older formats with a hierarchy that
mirrors the underlying physics, and is aligned with modern coding and database practices.

In support of this new structure, Lawrence Livermore National Laboratory (LLNL) has updated its
nuclear data/reactions management package Fudge to handle GND structured nuclear data. Fudge
provides tools for converting both the latest ENDF format (ENDF-6) and the LLNL Evaluated
Nuclear Data Library (ENDL) format to and from GND, as well as for visualizing, modifying and
processing (i.e., converting evaluated nuclear data into a form more suitable to transport codes)
GND structured nuclear data.

GND defines the structure needed for storing nuclear data evaluations and the type of data that
needs to be stored. But unlike ENDF and ENDL, GND does not define how the data are to be
stored in a file. Currently, Fudge writes the structured GND data to a file using the eXtensible
Markup Language (XML), as it is ASCII based and can be viewed with any text editor. XML
is a meta-language, meaning that it has a primitive set of definitions for representing hierarchical
data/text in a file. Other meta-languages, like HDF5 which stores the data in binary form, can also
be used to store GND in a file.

In this paper, we will present an overview of the new GND data structures along with associated
tools in Fudge.
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I. INTRODUCTION

The field of nuclear data lies at the junction between
basic nuclear physics, computational physics, and engi-
neering. The scientists and engineers who generate nu-
clear data (the ‘nuclear data community’) are responsi-
ble for producing reliable, up-to-date information about
nuclear reactions, structures and decays in a computer-
readable form that can be integrated in computer simu-
lations of nuclear reactors, medical physics applications,
nuclear weapons, etc. Data needed for these applications
include reaction cross sections, energy and angle distri-
butions and multiplicities of outgoing products, as well

as uncertainties and covariance matrices. Additionally,
these applications often call for detailed nuclear struc-
ture information (e.g. for identifying materials based on
gamma ray emissions) and decay information (for dosime-
try and decay heat calculations).
The Evaluated Nuclear Data File (ENDF) [1] format

was designed in the 1960s to accommodate neutron re-
action data to support nuclear engineering applications
in power, national security and criticality safety. Over
the years, the scope of the format has been extended to
handle charged particle, photo-nuclear, decay, atomic and
thermal neutron data. Along the way, many inconsisten-
cies and oddities have crept into the format as the nuclear
data community has sought to shoe-horn new data into
the ENDF format. The ENDF format is currently on ver-
sion 6 (ENDF-6), and there are many tools for processing,
creating, testing and visualizing ENDF-formatted evalu-
ations. Since ENDF has been adopted by most of the
international nuclear data community, it is the format of
choice for data centers to exchange evaluated data.
Despite its widespread acceptance, the ENDF format

is showing signs of its age. New applications in medi-
cal physics, space/radiation physics, homeland security,
nuclear waste management and non-proliferation drive
ENDF far beyond its original design and core uses. The
limited support in ENDF for correlated particle emis-
sion, limited numeric precision, and general lack of ex-
tensibility mean that the nuclear data community must
currently make approximations to the basic nuclear data
that reduce their ability to address many new opportu-
nities. More critically, at a time when the nuclear data
community is facing manpower shortages, new entrants
to the field find that learning the ENDF format is a steep
barrier that must be overcome in order to gain expertise
in the field. Together, these new needs and users of nu-
clear data drive the need to simplify and modernize the
ENDF format.
The ENDF format is not necessarily broken, but mod-

ernizing it is a daunting and expensive task that should
not be undertaken lightly. Here the nuclear data commu-
nity is helped by one of its own, Lawrence Livermore Na-
tional Laboratory (LLNL). LLNL was forced to revamp
its own internal data format used for its Evaluated Nu-
clear Data Library (ENDL). The ENDL format pre-dates
the ENDF format and suffers from many of the same
shortcomings. To address these, LLNL used funding from
the US Department of Energy’s Advanced Strategic Com-
puting (ASC) program to write a new infrastructure for
nuclear data management called Fudge. This ASC fund-
ing and the American Recovery and Reinvestment Act
allowed LLNL to build on this core effort and create the
Generalized Nuclear Data structure (GND) and support-
ing tools, including the ability to convert from ENDF-6
to GND and vice versa.

The Generalized Nuclear Data project allows the nu-
clear data community to revisit the design of our common
nuclear data format, “righting many shortcomings” in the
format, before critical expertise in the field disappears
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due to retirements. Fortunately, the past 50 years have
seen tremendous growth in computer technology, leading
not only to more powerful hardware but also to new pro-
gramming languages and concepts. Leveraging this work,
we propose storing nuclear data in a simple and easily
understood hierarchy that can be manipulated and used
with off-the-shelf open source software. The main goals
that influence the design of GND are to:

• Define a structure for storing nuclear data,
not a particular implementation. In other
words, while ENDF-6 defines both a data struc-
ture and how that structure is to be stored in a
file, GND defines the outline for how data are to
be represented, but does not dictate the type of
data storage. The data storage type could be any
‘meta-language’ such as XML or HDF5 (a meta-
language defines constructs for building a language
or format).

• Design the structure to mirror the underly-
ing nuclear reaction physics, making the data
easier to understand and use.

• Continue supporting all parameterized forms
available in ENDF, including resonance parame-
ters, Maxwellian and Watt spectra, and many oth-
ers. This allows for efficient storage of data, and
also leverages the man-decades of experience in-
vested in the processing and handling of parame-
terized types in ENDF.

• Define a small set of general-purpose data
containers that can be used to store vari-
ous data types. These are similar to the low-
level data containers that appear in ENDF (such
as the List, TAB1 and TAB2 containers described
in Section 0.6.3 of reference [1]). These new multi-
purpose data containers are designed to be easily
adapted for use in other data projects, including
possible future formats for storing Nuclear Struc-
ture information and experimental Nuclear Data.

• Reduce or eliminate artificial limitations. For
example, due to the limited space for reaction iden-
tifiers, the ENDF format can only handle 40 dis-
crete neutron inelastic scattering reactions (MTs 51
to 90), whereas GND allows for an arbitrary num-
ber and type of reactions.

• Reduce redundant data and the possibility
for discrepancies, by storing data in only one
place and referring to it using a name or link.

• Support storing evaluated data and derived
data simultaneously. For example, cross section
data may be stored as resonance parameters with
background, and also reconstructed into pointwise
or grouped data. In GND, these forms may be
stored together in the same structure, simplifying

data management. This also allows for a shared in-
frastructure, including a common interface for ac-
cessing evaluated and derived data.

The final two goals in this list may appear contradic-
tory at first glance: how can GND simultaneously store
multiple forms of data, but not store redundant data?
The distinction is that, while the original evaluated data
should always avoid redundancy, one or more forms of
derived data (produced by processing the original data)
can be stored alongside the original. GND clearly indi-
cates which data are the original using the ‘nativeData’
attribute described in Sec. IV.
In order to meet all these goals, a flexible underlying

design is required. This has led to conceiving GND as a
nested hierarchy, similar to a computer file system. This
hierarchy has three essential building blocks: ‘dataset’,
‘element’ and ‘attribute’. A ‘dataset’ is similar to a file
in a file system. An ‘element’ is similar to a directory
in a file system in that it can contain datasets as well as
other elements. Elements may also have ‘attributes’ as-
sociated with them. Attributes are small chunks of data
that describe the element to which they are attached (at-
tributes are also sometimes called ‘metadata’, and are
supported by some file systems). These three ingredi-
ents, ‘dataset’, ‘element’ and ‘attribute’, are all that are
required of a meta-language in order to implement the
GND structure. Table I shows how these building blocks
map to other meta-language building blocks.

TABLE I: Names of common building-blocks that appear in
GND, compared with their names in some common meta-
languages.

GND File System XML HDF5
dataset file text dataset
element directory element group
attribute meta-data attribute attribute

The reader will note that GND is called a structure
rather than a format. When GND is represented in a
meta-language like XML or HDF5, the resulting file is
said to be formatted in GND/XML or GND/HDF5 re-
spectively. Because XML and HDF5 both support the
essential building blocks needed for GND, the conversion
from a GND/XML file to a GND/HDF5 file and vice
versa is simple.

In this paper, we will be referring to some specific
implementations of GND, in the Python programming
language and also in the meta-languages XML [2] and
HDF5 [3], all of which provide the necessary ingredients
for storing GND data. We wish to re-emphasize, how-
ever, that these are only particular implementations and
that the GND structure can be expressed in other meta-
languages as well.

A nuclear data/reaction management package called
Fudge [4], developed by Lawrence Livermore National
Laboratory, has been updated to support the GND struc-
ture. Fudge (For Updating Data and Generating Eval-
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uations) is primarily written in Python, and can read,
write, visualize, modify, check and process data stored in
GND. The code is available for free download from the
Nuclear Data collaboration server at https://ndclx4.
bnl.gov/gf/project/gnd.

Fudge has recently been extended with the ability
to translate ENDF-6 formatted files both to and from
GND. This capability has already been used to create
an unofficial release of the ENDF/B-VII.1 library in the
GND/XML format. The resulting GND/XML files are
available for testing and review at http://www.nndc.
bnl.gov/exfor/endfb7.1_gndfiles.jsp. This capabil-
ity also opens up the possibility of modifying data in
GND format, either manually or using a package like
Fudge, and then retranslating the modified data back
to ENDF-6. More details on using Fudge to translate
ENDF-6 files can be found in Sec. VIII.

We recognize that the international community has
made substantial investments in representing, process-
ing and using nuclear data in the ENDF format. Also,
many world wide application codes are tied to the us-
age of ENDF-6 formatted data (from ENDF/B-VII.1,
JENDL 4.0, JEFF 3.1, CENDL, RUSFOND, etc.) via
processed data using the NJOY code [5]. For this reason,
we are working closely with key organizational groups
such as CSEWG and WPEC as we prepare the transition
to GND. To smooth this transition, we plan to make the
next versions of ENDF/B, and other major libraries re-
leased in ENDF-6 format, also available in GND. Further-
more, we expect other processing codes including NJOY
to begin supporting the processing of GND-formatted
evaluated data.

This paper starts with a high-level overview of the new
GND structure, which is proposed as a modern replace-
ment for the ENDF and ENDL formats. We then explore
the proposed new structure, starting with high-level ele-
ments such as the resonances and reaction elements, and
working down to more specific quantities like cross sec-
tions, products, distributions and multiplicities, as well as
the general-purpose data containers that are used within
each of these data types. We discuss the implementation
of GND in the Fudge code, including tools for translat-
ing data back and forth between ENDF and GND. We
will discuss the progress that has been made in develop-
ing several tools meant for use along-side GND, includ-
ing a new database for storing nuclear structure informa-
tion, and fast access routines for reading GND data. We
also discuss the status of a new subgroup (number 38) of
the Working Party for Evaluation Cooperation (WPEC),
that will oversee the process of creating an international
standard for storing nuclear data based on GND.

II. OVERVIEW OF GND

GND (like its predecessors ENDF and ENDL) is de-
signed to store evaluated nuclear reaction data produced
by the Nuclear Data community. These evaluations are

TABLE II: High-level overview of the nested hierarchy making
up the GND structure. Each item in the list corresponds
to an element in GND. The top-level reactionSuite element
contains other elements such as styles, documentations and
reaction. Each of these in turn may contain other elements
and/or datasets.

• reactionSuite (specifying the projectile and target)

– styles
– documentations
– particles
– resonances (optional)

∗ resolved
∗ unresolved

– reaction 1
∗ documentation (optional)
∗ crossSection
∗ outputChannel

· product 1
· product 2
· . . . (each product contains distributions,

multiplicity, etc.)
– reaction 2
– . . .

produced by integrating experimental results and model
calculations together into an evaluation containing a sin-
gle set of recommended values for reaction cross sections
and outgoing particle distributions. The evaluated data
can then be processed into forms suitable for modeling
the transport of nuclear particles through materials us-
ing Monte Carlo or deterministic transport codes.

The fundamental building block of an evaluation is the
‘reaction’ element, which consists of an input channel,
output channel and a cross section. As with ENDF,
GND only considers two-body input channels involving
one projectile and target. In GND, all reactions with
the same input channel are grouped together in an el-
ement called a ‘reactionSuite’ (for example, a reaction-
Suite might consist of all reactions incurred by a neutron
incident on 238U).

The output channel for each reaction consists of its
set of outgoing particles, or ‘product’ elements. Each
product is described by probability distributions for the
outgoing angle and/or outgoing energy and by an associ-
ated multiplicity (the number of products corresponding
to that distribution).

In addition to the list of reactions, the reactionSuite
also contains other elements, such as documentation and
a list of resonance parameters, that apply to more than
one reaction.

The major elements of the reactionSuite hierarchy are
shown in Table II. This hierarchy mirrors the under-
lying nuclear physics and can be implemented easily in
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any meta-language capable of storing a nested hierarchy.
Each element in this hierarchy will be described in more
detail in Sec. V.

III. NAMING CONVENTION

Unlike ENDF and ENDL that use integers to represent
names for objects (e.g., particles via ZA and reactions
via MT), GND uses strings. Furthermore, both ENDF
and ENDL use different integers for the same isotope, de-
pending on its use. As example, an isotope in ENDF-6 is
identified both by an integer ‘material’ number and a sec-
ond value for its ‘ZA’ (both related to it being developed
when computer technology was in its infant stage). In
ENDF-6 formatted files, 16O is represented as the integer
825 for its material name and 8016 (1000×Z+A) for its
ZA name (this MAT convention is described in Sec. 0.4.1
of [1]). GND has only one name for each object.

This section describes the GND naming convention for
particles and reactions.

A. Particle and product naming

In GND, the name of an isotope is a combination of its
atomic symbol (S) and nucleon number (#) as ‘S#’. For
a nucleus in excited level with level index L, the quali-
fier ‘_eL’ is added. For example, 16O, 239Pu and 239Pu
in its fifth excited state are labeled ‘O16’, ‘Pu239’ and
‘Pu239_e5’ respectively. If a nucleus is in an undefined
excitation level, typically considered to be the contin-
uum, the excited state suffix is ‘_c’ (e.g., ‘Pu239_c’ for
the continuum (n,n’) reaction, ENDF MT 91, for target
239Pu).

Aside from isotopes and their excited states, only two
other particles are currently required to translate the in-
cident neutron, charged particle and gamma sub-libraries
from ENDF and ENDL into GND. These particles are the
neutron named ‘n’ and the gamma named ‘gamma’.

In GND an outgoing particle is called a product. A
product is more than a particle in that a product also
contains a multiplicity and an outgoing energy-angular
distribution. The name for a product is taken from the
name of its particle and qualified by its multiplicity if
the multiplicity is other than one. For a product with an
integer multiplicity N, other than one, the string "[multi-
plicity:’N’]" is appended to the name of its particle (e.g.,
"n[multiplicity:’4’]" for a neutron with multiplicity four).
In GND there are three cases where the multiplicity of
a product is not an integer: 1) neutrons from fission,
2) gammas in general and 3) products from the ‘sum
of all remaining reactions’ (i.e., the GND equivalent of
MT 5 in ENDF). In these cases, the string "[multiplic-
ity:’energyDependent’]" is added to the particle name,
indicating that the product contains an element named
‘multiplicity’ (see Section VF2).

B. Reactions

Rather than the ENDF MT numbers (or the similar C
and S numbers of ENDL format of LLNL), GND uses the
list of particles in the input and output channels as they
are stored in the GND structure to identify a reaction.
This section describes how channels are represented in
GND and how the representations are diagrammatically
expressed.

In GND there are four objects that compose a reaction
and make it distinct from other reactions: 1) the input
channel, 2) the output channel, 3) the ‘process’ attribute
for the reaction and 4) decay channels.

Diagrammatically, the input channel is the name of the
input particles separated by the "+" character. As exam-
ple, for a neutron projectile hitting the target 239Pu, the
input channel is shown diagrammatically as "n + Pu239".

For a simple output channel where none of the prod-
ucts decay, the output channel is diagrammatically given
as the name of the products separated by the ’+’ charac-
ter. (Note, this is the list of product names and not the
outgoing particle names, see Section IIIA.) As example,
the output channel for the reaction 239Pu(n,3n)237Pu can
be shown as "n[multiplicity:’3’] + Pu237" indicating that
the GND structure for this reaction contains two prod-
ucts, one representing the three outgoing neutrons with
a single distribution and one for the outgoing 237Pu. If
the evaluator wishes to represent each neutron with a
different distribution, then the output channel will con-
tain four products, one for each of the three neutrons and
one for 237Pu. In this latter case, the output channel is
diagrammatically shown as "n + n + n + Pu237".

For some reactions the list of outgoing particles is in-
sufficient to uniquely identify the reaction. For these re-
actions the process attribute must be used to break the
degeneracy. Diagrammatically, the process attribute is
given at the end of the output string as "[PROCESS]"
where PROCESS is the name given to break the degen-
eracy. The output string and the process string are sepa-
rated by the space character (i.e., " "). For example, nu-
clear reaction modeling codes (such as EMPIRE [6] and
TALYS [7]) are able to differentiate between shape elastic
and compound elastic reactions. ENDF-6 does not allow
listing these reactions separately, but in GND they can
both be identified using a reaction ‘process’ qualifier as
"n + Pu239 [shape elastic]" and "n + Pu239 [compound
elastic]" respectively. Separating these (and other) physi-
cal reaction processes will be advantageous to evaluators.
For example, when performing actinide evaluations, one
must often adjust the fission cross section obtained from
the modeling code in order to fit the experimental data.
To preserve the reaction cross section from the model,
other reaction channels including compound elastic must
be rescaled. Without separate reaction processes, the
shape elastic (which does not contribute to the reaction
cross section) cannot be separated from the compound
elastic.

For some reactions one or more of the products de-
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cays. The most common example of this is a two-body
output channel where the heavy product is in an excited
state which subsequently decays via gamma emission.
Schematically, in GND a product that decays and its de-
cay products are contained within the ’(’ and ’)’ charac-
ters with a ’->’ separating the product that decays from
its decay products. As example, in the output channel
“n + 239e3Pu” the 239e3Pu will decay to its ground state.
This reaction is schematically given as

n + (Pu239_e3 -> Pu239 + gamma)

which indicates that the output channel is initially a two-
body channel with a neutron and 239e3Pu as products
with the 239e3Pu immediately decaying to 239Pu and gam-
mas. For this reaction, the 239Pu and gammas are listed
in the decay channel of 239Pu.

In ENDF, the reaction (n,n p), MT 28, cannot distin-
guish whether the neutron or proton is emitted first, or
both at the same time. In GND these reactions are dis-
tinct, and all can be present simultaneously. As example,
for a neutron hitting 16O, the following output channels
would be summed into one MT 28 channel in ENDF

n + (O16_e17 -> H1 + N15 + gamma)
H1 + (N16_e4 -> n + N15 + gamma)
n + H1 + N15 + gamma

while they are all distinct in GND.
The Q-value for an output channel is calculated from

the mass differences between the input channel particles
and the output channel products. That is, the Q-value
for the output channel does not use the masses of the
products in any decay channel. Decay channels also have
Q-values which are calculated from the mass differences
between their parent product and the immediate decay
products. For the prior (n,np) example, the reaction pro-
ducing 16e4N has a Q-value for the output channel of
about -12.98 MeV (the sum of the masses of the neutron
and 16O minus the sum of the masses of the proton and
16e4N) while the decay channel for 16e4N has a Q-value
of about 0.86 MeV.

Fission reactions also require extra information in
the reaction qualifier. In GND, total fission produc-
ing one prompt neutron, six delayed neutrons, and
gammas is labeled as "n[multiplicity:‘energyDependent’,
emissionMode: ‘prompt’] + n[emissionMode:‘6 delayed’]
+ gamma [total fission]". The list of outgoing particles is
complex due to the nature of fission, so the extra reaction
qualifier "[total fission]" is added to help uniquely identify
the reaction.

Table III shows examples of some common reaction
identifiers in GND, along with their MT equivalents
where possible.

IV. REPRESENTATIONS OF DATA IN GND

In order for GND to store evaluated data and derived
data (suitable for plotting and transport codes) simul-

TABLE III: Example of reaction labels in GND. ENDF MT
numbers are listed when possible, but some GND reactions
have no MT equivalent.

GND reaction label ENDF
MT

n + Pu239 → n + Pu239 2
n + Pu239 → n + Pu239 [compound elastic]
n + Pu239 → n[multiplicity:‘2’] + Pu238 16
n + Pu239 → n[multiplicity:‘3’] + Pu237_e1
n + Pu239 → n + Pu239_e1 51
n + Pu239_m1 → n + Pu239_c 91
n + Pu239 → Pu240 + gamma 102
n + Pu239 → Pu240_e1 + gamma
C12 + Pu239 → C12_e2 + Pu239_e1
n + Be7 → (Be8 → He4[multiplicity:‘2’])

taneously, a quantity (e.g., cross section) must be able
to hold various representations of its data concurrently.
GND defines two types of representation containers. One
is called ‘form’ and the other is called ‘component’. In this
section we discuss the usage of ‘form’ and ‘component’ in
GND.

A. Forms

One of the goals for GND is to enable the storing of
more than one representation of a quantity simultane-
ously. For example, an evaluator might represent a cross
section as a combination of resonance parameters with a
pointwise background (in ENDF this is represented with
MF 2 and 3 data). The resonance parameters can be re-
constructed to a pointwise representation and added to
the background to achieve a fully pointwise representa-
tion for plotting, comparison with other cross sections,
processing and use in continuous-energy Monte Carlo
transport codes. The cross section might also be grouped
into a standard set of energy bins for use with transport
codes. GND allows all three of these representations of
the cross section to be stored in a file simultaneously.
This is different from ENDF, where cross section data
can be stored as a combination of resonance parameters
(MF 2) and background data (MF 3) or as resonance pa-
rameters (MF 2) and reconstructed pointwise data (MF
3), but not both simultaneously.

In GND, each representation of a quantity is called
a ‘form’. For the crossSection example above, the
three forms are stored inside the crossSection element as
schematically shown in Table IV. In addition to cross sec-
tions, examples of other quantities which have forms are
multiplicity, and distribution components (see Sec. IVB).

While all the different forms are valid representations
of a quantity, they are not equivalent. In the example of
Table IV the ‘resonancesWithBackground’ form contains
the original data, from which the pointwise and grouped
forms are derived. GND introduces the concept of ‘na-
tiveData’ to identify the original data form (that is, the
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TABLE IV: Overview of a crossSection data element, high-
lighting different forms in which a cross section may be rep-
resented. The nativeData attribute indicates that the res-
onancesWithBackground form was originally entered by the
evaluator, and that the pointwise and grouped forms are de-
rived from resonancesWithBackground. Throughout this pa-
per, GND attributes such as ‘nativeData’ will be italicized.

• reactionSuite

– reaction 1
∗ crossSection nativeData = "resonancesWith-
Background"

· form: resonancesWithBackground
· form: pointwise
· form: grouped

∗ outputChannel ...
– reaction 2 ...

form inputted by the evaluator). All quantities (i.e., el-
ements) that contain forms have a nativeData attribute.
The nativeData attribute in the crossSection element ex-
ample of Table IV indicates that the ‘resonancesWith-
Background’ is the form originally chosen by the evalu-
ator, and that the ‘pointwise’ and ‘grouped’ forms are
derived from it.

B. Components

In order to store evaluated and processed distribution
data simultaneously for each product, GND introduces
the concept of a ‘component’ for distributions.

In general, probability distributions for outgoing prod-
ucts are described by the double-differential distribution

P (E′, µ|E)
2π = P (E′,Ω|E) = 1

σ(E)
∂2σ(E,E′,Ω)

∂E′∂Ω (1)

where E is the projectile energy, E′ is the product en-
ergy, Ω is the directional solid angle, µ is the cosine of
the angle between the projectile and product velocities,
and σ(E) and ∂2σ(E,E′, µ)/∂E′∂Ω are the integrated
and double-differential cross sections, respectively. (One
exception to the general distribution described by Eq. 1
that appears in ENDF is Coulomb scattering, MF 6 with
LAW 5. Coulomb scattering is handled by GND, but will
not be described here as it is beyond the scope of this
article). There are several ways to represent the data
for P (E′, µ|E). For example, it may be stored as point-
wise double-differential data or as Legendre coefficients
Cl(E,E′) defined as

Cl(E,E′) =
∫ 1

−1
dµ P (E′, µ|E)Pl(µ) (2)

where Pl(µ) is the Legendre polynomial of degree l.

As another example, for a two-body output channel
only the center-of-mass angular data P (µ|E) are needed
since the outgoing energy can be derived from the angle
(i.e., P (E′, µ|E) = P (µ|E)δ(E′ − E′(E,µ)). In GND,
P (µ|E) is called the ‘angular’ component. For process-
ing or visualization, however, this angular distribution
data may be expanded into full double-differential dis-
tribution data P (E′, µ|E) as a function of both energy
and angle (‘energy-angular’ component). The two types
of distribution (‘angular’ and ‘energy-angular’) are each
a ‘component’ of the distribution.

As with forms, only one component for each distribu-
tion is the original component specified by the evaluator;
the other components are derived from it. Hence, a distri-
bution also requires a ‘nativeData’ attribute to indicate
which component was originally chosen by the evaluator.

Each component of a distribution may contain its data
in various forms. For example, for a two-body out-
put channel, the angular data can be stored in point-
wise form (P (µ|E)) and/or Legendre form (Cl(E) =∫ 1
−1 dµ P (µ|E)Pl(µ)). An example of a possible distri-
bution for a two-body output channel with various repre-
sentation of its data is shown in Table V. In this exam-
ple, the evaluator inputted the distribution as an angular
component in Legendre form (i.e., Cl(E)). Later, an an-
gular pointwise representation of the angular/Legendre
data was generated from the Legendre coefficients, us-
ing enough points to preserve the original behavior to
a user-supplied tolerance. Finally, a Legendre/grouped
component/form, suitable for use in deterministic trans-
port codes, was generated. All three of these represen-
tations of the data, angular/Legendre, angular/pointwise
and Legendre/grouped, can be stored simultaneously in
GND.

TABLE V: An example of a distribution for a product of a
two-body output channel. The distribution has two compo-
nents (in bold), ‘angular’ and ‘Legendre’. Each component
contains one or more forms. The ‘nativeData’ attributes in-
dicate that the Legendre form of the angular component con-
tains the original data inputted by the evaluator.

• distributions nativeData="angular"

– angular nativeData="Legendre"
∗ Legendre ...
∗ pointwise ...

– Legendre
∗ grouped ...

Table VI shows the ENDFMF, LAW and LANG equiv-
alent for the components/forms listed in Table V.

Using the concepts of form, component and native-
Data, GND can contain one or more derived representa-
tions of a quantity, without overwriting the original data
entered by the evaluator.

7



Generalized Nuclear Data: a New Struc . . . NUCLEAR DATA SHEETS C.M. Mattoon et al.

TABLE VI: ENDF equivalents for the components in Table V.

• angular P (µ|E)

– Legendre
ENDF MF 6, LAW 2, LANG 0

– pointwise
ENDF MF 6, LAW 2, LANG 12

• Legendre Cl(E,E′)

– grouped
ENDF MF 6, LAW 1, LANG 1

C. Links

Links are an important part of GND, allowing the eval-
uator to refer to other elements within the file or even to
elements in external files or databases. Examples of data
requiring links include:

• Distributions for one reaction product may be
treated as the recoil from another product, requir-
ing a link to the other product.

• Production cross sections may be listed as an
energy-dependent multiple of another cross section,
requiring a link to the other cross section.

• Covariances are stored in a separate file from the
quantities they correlate (as described in Sec. VH).
Links are necessary to associate the covariance with
the correct data.

In GND, links are listed using the ‘xPath’ syntax de-
scribed in [8]. This syntax is similar to paths used in
the Unix filesystem, supporting both absolute and rela-
tive links. For example, an absolute xPath link to the
resonances element at the top level of a reactionSuite is
listed as ‘xlink:href=“/reactionSuite/resonances” ’.

V. DETAILS OF THE GND STRUCTURE

The reader has now encountered a high-level overview
of the GND reactionSuite, as well as some details of nam-
ing conventions and the use of multiple forms and compo-
nents to describe the data. More details on the elements
appearing inside the reactionSuite are described in this
section.

The GND structure begins with a reactionSuite ele-
ment, and all other data in the structure are nested within
this element (the label ‘reactionSuite’ is used rather than
‘reaction suite’ due to the constraints of XML and other
meta-languages, which do not allow white spaces inside
the label of an element or attribute. For the same rea-
son, labels like ‘cross section’ and ‘Legendre Pointwise’
become ‘crossSection’ and ‘LegendrePointwise’). The re-
actionSuite is defined by a combination of a projectile

(e.g., neutron, proton or gamma), with a target (e.g., nu-
cleus in ground or excited state). It also contains a format
version number, in order to support future additions or
changes to the GND structure. The major elements of
the reactionSuite are described next.

A. The ‘style’ element

The first required element encountered inside the re-
actionSuite is named ‘styles’. This element contains one
or more ‘style’ elements, each of which corresponds to
the evaluated or/and processed data contained in the
GND structure. For example, a GND file may contain
both evaluated and grouped deterministic data. Each
of these representations of the data must have a corre-
sponding style element that contains information specific
to that representation. For evaluated data, information
such as library version number and names of evaluators
are stored in its style element. For grouped deterministic
data, information about the group energy boundaries is
also stored inside the style element.

TABLE VII: Styles and some of their attributes currently al-
lowed in GND.

Name Description

Styles
Evaluated Original data from evaluator

Processed Deterministic
Monte Carlo

Attributes Library ENDF/B, for example
Version VII.1, for example

B. The ‘documentations’ element

GND also requires a ‘documentations’ element, that
in turn contains one or more sections of documentation.
These should contain a high-level overview of the file, in-
cluding author and contact information, procedures and
codes used in creating the file, and other references. Mul-
tiple sections can be used to store different forms of doc-
umentation for different media (e.g., one form for writing
back to ENDF and another for display on the web).

Reaction-specific information can be stored in the doc-
umentations section, but GND also makes room for
storing reaction-specific documentation inside the cor-
responding reaction element, which should be the best
practice for future evaluations (see Sec. VE).

C. The ‘particles’ element

Particle information like mass, proton number and
nuclear levels are needed for evaluations and transport
codes. Unlike ENDF and ENDL, which repeat these data
many times in different sections (e.g., the mass for the
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target is replicated many times in an ENDF file, and
often these values differ), GND stores each datum only
once. Particle information are stored inside the ‘particles’
element. The particles element contains a list of ‘parti-
cle’ elements where data for each particle are stored. A
schematic of a particle element is shown in Table VIII.

TABLE VIII: Example of the structure for storing particle
information such as masses, excited levels and decays. In the
future, the particles element may contain a link to an external
particle database.

• particles

– particle name="F19" mass="18.998204 amu"
∗ level name="F19_e1", index=1, en-
ergy="109.9 keV"

· gamma finalLevel="F19_e0" probabil-
ity="1.0"

∗ level name="F19_e2" energy="1.97e5 eV"
∗ . . .

– particle name="F20" mass="19.9999 amu"
– . . .

When a suitable structure for an external particle
database is developed, the GND design will allow a re-
actionSuite to point to an external particle database so
that a collection of reactionSuites (different targets and
potentially different projectiles) can all be built using con-
sistent particle information. This option will likely not
be used in the near term since many older evaluations
in nuclear data libraries have been built using different
values for masses. In the future, however, this will pro-
vide a way to keep nuclear data consistent and to avoid
problems with inconsistent Q-values and thresholds. A
discussion of progress towards defining a structure for a
particle database is given in Sec. IXF.

D. ‘resonances’ element

Resonance parameters are a compact way to store the
low-energy cross sections for multiple reactions (and can
in principle also be used to calculate distributions). Since
they apply to more than one reaction, resonances are
stored outside of any reaction elements. In the rapidly
fluctuating resolved resonance region, each resonance can
be described by its energy, spin, parity and partial widths
(one width for each open channel). In the intermediate or
‘unresolved’ resonance region where resonances increas-
ing overlap, average resonance parameters may be used
to represent the data. In both regions, the resonance pa-
rameters can be used to reconstruct pointwise, linearly-
interpolable data.

GND follows the example of the ENDF format by per-
mitting the use of several different resonance parameter
formalisms in both the resolved and unresolved resonance

regions. In the resolved region, resonances may be rep-
resented using various approximations to the general R-
Matrix formalism [9, 10], including Single- and Multi-
Level Breit Wigner, Reich-Moore and a limited R-Matrix
approach. In the unresolved region, only the Single-
Level Breit-Wigner approximation is allowed (similar to
ENDF). In each case, the resonance parameters are stored
using the ‘table’ data container described in Sec. VI F.

The package Fudge includes a function for recon-
structing the cross section from resonance parameters
stored in GND. This code will be described further in
Sec. VIIA.

E. ‘reaction’ element

Most of the data in a reactionSuite will usually reside
within the ‘reaction’ elements. In GND, there is one reac-
tion element for each distinct output channel. A distinct
output channel is any channel for which the physical pro-
cess or order of products emitted can be distinguished,
and which the evaluator has decided to demarcate. Here
are several examples.

1. For elastic scattering, the evaluator may provide
a single elastic scattering reaction, or she may de-
cide to separate shape and compound elastic scat-
tering into two reaction elements (one with process
attribute "shape elastic" and the other with "com-
pound elastic").

2. In ENDF the reaction ‘n + N14 → n + H1 + C13’
does not distinguish whether the ‘n’ or the ‘H1’ is
emitted first (or whether both are emitted at the
same time). If this reaction is actually the two body
reaction ‘n + N14 → H1 + C14’ followed by the
two body decay of the ‘C14’ to ‘n + C13’ then only
the center-of-mass angular distributions are needed,
which can save data storage space.

3. The reaction1 ‘H3 + H3 → 2n + H4’ could be rep-
resented with three distinct output channels which
we label as ‘2n + H4’, ‘n + (H5 → n + H4)’ and ‘n
+ (H5_e1 → n + H4)’. In GND each of these can
be listed as separate reaction elements.

Each reaction element contains the cross section, prod-
ucts, distributions, etc. for that reaction. This is opposite
to the convention in the ENDF format, where all cross
section data for all reactions are grouped together in the
MF 3 (and possibly MF 2) file, all angular distribution
information are grouped in MF 4 or MF 6, and so on.
The ENDF approach scatters data for a single reaction
across the entire file, and may lead nuclear data eval-
uators to address reaction data as separate components

[1] For brevity ‘n[multiplicity="2"]’ is written as ‘2n’.
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rather than considering them all as part of a whole. GND
departs from the ENDF convention, storing all reaction
data together in a more unified and physical layout.

GND divides reactions into two types, complete and
incomplete. A complete reaction is one for which all
products (with the possible exception of gammas) are ex-
plicitly listed in the output channel. For these reactions,
the checking codes (see Section VIIC 2) can run addi-
tional tests to ensure that quantities like neutron and
proton number are conserved. (If a reaction contains a
weak-decay, then proton number need not be conserved,
but as long as the change can be determined and the
correction balances, the reaction is still considered com-
plete.) Reactions that do not explicitly list all products
are called ‘incomplete’. Current evaluated libraries con-
tain two types of incomplete reactions: fission, which is
missing protons and neutrons from the outputChannel
since fission products are not explicitly listed, and the
‘sum of all remaining reactions’ (corresponding to MT
5 in the ENDF format), which generally has too many
protons and neutrons in the outputChannel since prod-
ucts from multiple different reactions have been lumped
together.

1. The ‘crossSection’ element

Every reaction element in a GND structure must con-
tain a ‘crossSection’ element. The cross section (σ(E)
where E is the projectile incident energy) may be repre-
sented in several different ways as shown in Table IX.

Each of the representations in Table IX is a ‘form’. As
discussed in Sec. IV, multiple forms of the same data can
be stored simultaneously. In that case, the ‘nativeData’
attribute clarifies which data form was chosen by the orig-
inal evaluator, and which forms are derived. An example
of (XML-formatted) GND cross section data is shown in
Fig. 1.

TABLE IX: Allowed forms for storing a cross section in GND.
Form
pointwise single interpolation region, using

the ‘XYs’ data container discussed
in Sec. VI

piecewise multiple interpolation regions, us-
ing the ‘regionsXYs’ container

resonances-
WithBackground

has a link to a resonance element,
and a pointwise or piecewise form
that should be added to recon-
structed resonances (equivalent to
ENDF MF 2 and 3)

weightedPointwise cross section is an energy-
dependent multiple of the cross
section from another reaction (this
occurs when data is translated
from ENDF MF 9)

grouped average cross section over energy
intervals

Some cross section forms require the use of links. For
example, the resonancesWithBackground form seen in
Fig. 1 uses a link to point to the resonance parameters
that must be reconstructed and added to the background.
In that example, the full path to the link is given (start-
ing with the top-level reactionSuite element). This link
points to another resource within the same file, but links
could also be used to point to external files.

2. The ‘outputChannel’

In addition to the cross section, a complete description
of a nuclear reaction requires a list of outgoing products.
In GND, these products are collected together inside the
‘outputChannel’ element. The outputChannel contains a
Q-value as well as a list of products.

Outgoing reaction channels fall into two categories:
two-body and uncorrelated bodies. If only two particles
are initially produced, and the excitation energy of each
product is known, the reaction is called ‘two-body’. In
this case, only the angular distribution in the center-of-
mass frame for one product must be given; the angular
distribution for the other product can be obtained by
symmetry, and the energy of both products can be calcu-
lated from their angle in the center-of-mass frame. Reac-
tions are called ‘uncorrelated’ if they involve more than
two primary products or if the excitation energies are not
known. For ‘uncorrelated’ reactions, the probability dis-
tributions for each product must be specified as a function
of incident energy, outgoing energy and outgoing angle.
That is, P (E′, µ|E) must be given for each product, and
the distribution for each product is uncorrelated with the
distributions given for the other products.

TABLE X: Genres for outputChannel and decayChannel ele-
ments (see Sec. VF 3).
Genre Description
two-body only two products are emitted per

channel, the products are cor-
related, and only the center-of-
mass angular distribution is needed
in order to calculate the double-
differential distribution

uncorrelated the products are uncorrelated from
each other, and a complete double-
differential distribution is required
in order to describe each product

GND introduces the concept of ‘genre’ in order to spec-
ify whether the output channel can be treated as ‘two-
body’ or ‘uncorrelated’. The allowed genres for an out-
putChannel in GND are summarized in Table X.

In addition to the genres listed in Table X, a special
channel genre called the ‘sumOfRemainingOutputChan-
nels’ is used to store the equivalent of ENDF MT 5. This
genre is used when many outgoing reactions are possi-
ble and are difficult to separate with experiment (often
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<crossSection nativeData="resonancesWithBackground">

<resonancesWithBackground>
<resonanceRegion xlink:type="simple" xlink:href="/reactionSuite/resonances"/>
<piecewise xData="regionsXYs">

<axes>
<axis index="0" label="energy_in" unit="eV" interpolation="byRegion,byRegion" frame="lab"/>
<axis index="1" label="crossSection" unit="b" frame="lab"/></axes>

<region index="0" length="2" accuracy="0.001">
<interpolationAxes index="0" interpolation="linear,linear"/>
<data> 1e-5 0 3e4 0</data></region>

<region index="1" length="283" accuracy="0.001">
<interpolationAxes index="0" interpolation="linear,linear"/>
<data> 3e4 1.63726 ... 2e7 2.360617</data></region>

</piecewise>
</resonancesWithBackground>

<pointwise xData="XYs" length="268399" accuracy="0.01">
<axes>

<axis index="0" label="energy_in" unit="eV" interpolation="linear,linear" frame="lab"/>
<axis index="1" label="crossSection" unit="b" frame="lab"/></axes>

<data> 1e-5 36525.3468075 1.2626001e-5 32505.91011 ... 2e7 2.360617</data>
</pointwise>

</crossSection>

FIG. 1: Sample cross section data in GND/XML, containing two different forms of the cross section data. The resonancesWith-
Background form contains the original evaluated data, and the pointwise form was derived from it (by reconstructing resonances
and then adding the piecewise background).

at higher incident energies). The sumOfRemainingOut-
putChannels applies only to reactions, not to decays.

F. ‘product’ elements

Product distributions and multiplicities are stored in-
side the ‘product’ element in GND. The outline of a prod-
uct element is given in Table XI:

TABLE XI: Organization of the ‘product’ element in GND.

• product (including particle identifier)

– distributions
∗ components

· forms
– multiplicity
– decayChannel (optional)
– average energy and/or momentum (optional, de-

rived data)

The product element first identifies the outgoing par-
ticle (‘n’, ‘gamma’, ‘Pu239’ etc.), then lists distributions
and multiplicity for that particle.

1. ‘distributions’

Each product must contain a ‘distributions’ element. If
no distribution data are available, the element must still
be present, with the nativeData attribute set to ‘none’.

As described in Sec. IV, a distribution element contains
one or more component elements, each of which contains
one or more form elements. Table XII lists some of the
available components and their forms. The uncorrelated
distribution component (not to be confused with the un-
correlated output channel genre) is a special case that
must contain both an angular and an energy component
in order to fully describe the distribution (similar to the
combination of MF 4 and 5 in ENDF-6). Currently, in-
stances of the energy component appear only within an
uncorrelated component.

2. ‘multiplicity’

In addition to distributions, each product in GND re-
quires a multiplicity. For many simple reactions such as
(n,2n), the multiplicity is constant and may be given as an
attribute of the product element. In other cases such as
fission and capture, the product multiplicity varies with
incident energy. In this latter case, the average multi-
plicity (generally non-integer) is listed as a function of
incident energy and the data are stored using the XYs
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TABLE XII: Partial list of distribution components and forms
currently allowed in GND.
Component Form ENDF equivalent

angular

pointwise MF4 LTT2
Legendre MF4 LTT1
isotropic MF4 LTT0
recoil MF6 LAW4

energy

pointwise MF5 LF1
Evaporation Spectrum MF5 LF9
Maxwellian MF5 LF7
Watt Spectrum MF5 LF11
Madland-Nix MF5 LF12
N-Body Phase Space MF6 LAW6

energy-angular Kalbach-Mann MF6 LAW1 LANG2
angular-energy pointwise MF6 LAW7
uncorrelated combination of ‘angu-

lar’ and ‘energy’
MF4 and MF5

data container (described in Sec. VI).

3. Other product data

Some optional data types may appear inside a product
element. For example, if the product is subject to ra-
dioactive decay, that information can be stored in a ‘de-
cayChannel’ element. The decayChannel is very similar
to the outputChannel (discussed in Sec. VE2). It con-
tains a Q-value, a genre (indicating whether the decay
is two-body or uncorrelated bodies), and a list of decay
products including distributions and multiplicities.

A product element may also contain average energy
and momentum data. These data can be calculated for
all products that contain distribution data. The aver-
age energy information provides a simple way to test
that the evaluation conserves energy (discussed further
in Sec. VIIC). Like cross section and multiplicity, aver-
age energy and momentum are one-dimensional functions
and are stored using the XYs data container.

After processing, a GND file may also contain transfer
matrices for each product. These transport matrices are
used in deterministic transport codes.

G. Other top level elements

In GND, a reaction element can only store a distinct
reaction. That is, each reaction element stores a fraction
of the total cross section, and summing up all the reac-
tions shall reproduce the total cross section. However,
evaluators often need to store cross sections that repre-
sent sums over more than one distinct reaction channels,
or that represent a portion of one distinct channel. The
GND structure supports various sum and partial quanti-
ties via the ‘summedReaction’, ‘fissionComponent’, ‘par-
tialGammaProduction’ and ‘production’ elements, which
are stored under the ‘reactionSuite’ element.

The summedReaction element allows nuclear data eval-
uators to supply a cross section for a sum of various dis-
tinct reactions. For example, ENDF MT 1 contains the
total cross section, summed over all distinct reactions,
and MT 4 contains the sum over all inelastic reactions.
The summedReaction element contains a list of the reac-
tions that are being summed over, a cross section, and a
Q-value. Unlike the reaction element, the summedReac-
tion contains no output channel or description of prod-
ucts.

The summedReaction element is in principle redun-
dant, since the same cross section could be computed
by summing up the cross section of all the constituent
reactions. However, these data are still important since
summed cross sections such as total may have been mea-
sured experimentally even though constituent reactions
have not.

The ‘fissionComponent’ element allows for subdivid-
ing fission into its component reactions. Physically, fis-
sion consists of many different reactions depending on
the combination of fission products. For simplicity, these
are grouped together into a few categories: ‘first-chance’,
where the compound nucleus undergoes fission, ‘second-
chance’ where the compound nucleus first emits a neutron
and then fissions, and so on. Evaluations often contain
a description of these separate fission components along
with a description of their total sum. However, outgoing
product distributions are usually only available for the
total fission, not for its components. Rather than listing
first and second chance as reaction elements and total fis-
sion as a summedReaction element, GND stores the total
fission as a reaction element and uses a fissionComponent
to store first-chance, second-chance and so on. The fis-
sionComponent element is nearly identical to a reaction
element, containing a cross section and an output channel
(in some cases the output channel will contain distribu-
tions, although the relationship between this data and
the distributions listed for the total fission reaction is un-
clear). In addition, it contains a ‘fissionGenre’ attribute,
which may be ‘firstChance’, ‘secondChance’ and so on.
Summing up the fissionComponent cross sections should
reproduce the total fission cross section.

Nuclear data evaluations sometimes contain gammas
whose distinct reaction is unknown. Since these gammas
cannot be associated with a particular reaction, they are
instead listed together in the ‘partialGammaProduction’
reaction in GND. This element (corresponding to ENDF
MT 3) lists the cross section, multiplicity and outgoing
distributions for all gammas not associated with any dis-
tinct reactions.

Finally, the ‘production’ element is used to store the
cross section for producing radioactive products (corre-
sponding to ENDF MFs 8, 9 and 10). The production
element identifies the radioactive product, and contains
a cross section and a Q-value, but no output channel.

This section has introduced several new elements that
may appear in a reactionSuite. For clarity, table XIII
summarizes all the elements that may appear at the top
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TABLE XIII: List of all elements that are allowed at the top
level within a reactionSuite. Some elements are optional; oth-
ers may appear more than once.

element number allowed
styles 1
documentations 1
particles 1
resonances 0 or 1
reaction 1 or more
partialGammaProduction 0 or 1
summedReaction 0 or more
fissionComponent 0 or more
production 0 or more

level inside a reactionSuite. In the current definition of
GND, the order of these elements is important. For ex-
ample, all reaction elements must be listed before any
partialGammaProduction or summedReaction elements.

H. Covariances

In addition to the reactionSuite, GND defines a struc-
ture called the ‘covarianceSuite’, used for storing nuclear
data covariances. The covarianceSuite is stored in a sepa-
rate file from the reactionSuite and uses links to associate
covariance data with the correct reaction data. This is
different from the design of most of GND, which usually
attempts to gather all data for a reaction in a single place.
To understand the reason behind this departure, we ex-
plore the types of covariance data that are now becoming
available in reaction libraries.

Recent releases of ENDF-formatted libraries have be-
gun to include more covariance matrices. These include
simple covariances between the evaluated cross section
for a single reaction at two different incident energies, and
also more complex covariances between different reactions
or even between reactions involving different targets or
projectiles. Together, all these individual covariance sec-
tions can be considered as rectangular blocks that make
up a much larger covariance matrix. Covariances for one
reaction at different energies are clustered around the di-
agonal of this larger matrix, while cross-terms between
different reactions or between different materials lie away
from the diagonal. The matrix may become even more
complex in the future if correlations start to be given for
different types of data (between angular correlations and
reaction cross sections, for example). The ENDF-6 for-
mat allows for all these types of covariances, although
some types are not yet used in any ENDF-VII.1 evalua-
tion.

The complexity of covariance data, the fact that a co-
variance may couple more than one projectile/target, and
the size required to store covariances are the main rea-
sons for choosing to store covariances separately in GND.
Also, since many applications of nuclear data do not use
the covariance data, storing covariances separately means

that programs can save time and memory by not reading
them in.

TABLE XIV: Organization of the covarianceSuite in GND.
The covarianceSuite usually corresponds to the combination
of one target and one projectile (like the reactionSuite). How-
ever, covariances may also be given between reactions for
different targets and/or projectiles, which a covarianceSuite
must also be able to handle. According to the current design
of GND, all of the ‘cross-material’ covariances for a library
should be stored together in a single multi-material covari-
anceSuite.

• covarianceSuite

– styles
– reactionSums (optional)
– resonanceParameterCovariance (optional)
– section 1

∗ rowData
∗ columnData
∗ covarianceMatrix (or ‘mixed’, containing the
sum of two or more covarianceMatrix ele-
ments)

– section 2
– . . .

The structure of the covarianceSuite is seen in Ta-
ble XIV. As in the reactionSuite, the ‘styles’ element
is used to give library version information along with any
supplemental information about processing. The ‘reac-
tionSums’ section is necessary since a single covariance
matrix may be given for the sum of several reactions,
rather than for each reaction individually. This sum is
defined in the reactionSums section (including a list of
all the component reactions).

Fitting data with a model often results in a covariance
matrix between the model parameters. GND supports
storing these model parameter covariances. The resonan-
ceParameterCovariance section is a special case.

The bulk of the covarianceSuite is made up of ‘section’
elements. Each of these sections represents one block of
the full covariance matrix for this combination of target
and projectile. Sections are identified by the data they
correlate, that is, by their ‘rowData’ and ‘columnData’.

A sample GND covariance matrix is shown in Fig. 2.
This example shows a typical symmetric matrix that
stores the covariances between different incident energies
for a single reaction. GND offers several choices for sav-
ing space when storing symmetric or sparse matrices. For
more details, see Sec. VIF.
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<covarianceMatrix type="relative">
<axes>

<axis index="0" label="row_energy_bounds" unit="eV"
interpolation="linear,flat" length="7"> 1e-5 1.4e6 2e6 4e6 8e6 1.6e7 6e7</axis>

<axis index="1" label="column_energy_bounds" unit="eV"
interpolation="linear,flat" mirror_row_energy_bounds="true"/>

<axis index="2" label="matrix_elements" unit=""/></axes>
<matrix dimensions="6,6" form="symmetric" precision="6">

3.671000e-05
2.846000e-05 2.407000e-05
1.920000e-05 1.914000e-05 1.907000e-05
2.493000e-06 1.024000e-05 1.894000e-05 3.463000e-05

-1.924000e-05 -1.325000e-06 1.877000e-05 5.504000e-05 1.022000e-04
-3.276000e-05 -8.521000e-06 1.866000e-05 6.774000e-05 1.316000e-04 1.713000e-04</matrix>

</covarianceMatrix>

FIG. 2: Sample GND/XML covariance data. Energy group boundaries are stored inside the axes element, followed by the
matrix elements. Since this matrix is symmetric, only the lower-diagonal portion of the matrix is stored (and energy boundaries
are only required on one axis).

VI. GENERAL-PURPOSE DATA CONTAINERS
FOR GND

One of the main goals for GND (defined in Sec. I) is
to define general-purpose data containers for storing var-
ious kinds of nuclear data. Fortunately, only a few fun-
damental data containers are necessary in order to store
most nuclear reaction data. These containers are used in
many places throughout GND. They include containers
for one-, two- and three-dimensional functions, as well as
tables and matrices.

A. Axes element

In GND, containers for one-, two- or three-dimensional
functions contain not only numerical data, but also infor-
mation about each axis. Each axis contains ‘label’, ‘in-
dex’, ‘unit’ and ‘frame’ attributes. The label is a string
for the name of that axis (e.g., "mu" for the µ axis) and
may be used for labeling the axis when the data are plot-
ted. The index associates the axis with a column of data
(that is, the first independent axis has index=0 and so
on). The unit describes the units for that axis (e.g., "eV"
or "kg"), and the frame describes which frame, lab or
center-of-mass, the data are given in.

Each independent axis also contains an interpola-
tion attribute that is a string of the form "qualif-
ier:independent,dependent". The allowed values for each
part of this string are listed in Table XV. A full descrip-
tion of each interpolation type and qualifier is available
in Sec. 0.5.2 of the ENDF format manual [1].

In Table XV, the ‘flat’ and ‘chargedParticle’ interpola-
tions are valid only for the dependent axis. The ‘byRe-
gion’ interpolation indicates that a separate interpolation
will be associated with each region of a piecewise func-
tion.

Sample axes information for angular distribution data

TABLE XV: Interpolations in GND are listed in a string of the
form "qualifier:independent,dependent". The values allowed
for "qualifier", "independent" and "dependent" are listed here.

Options

qualifier unitBase
correspondingPoints

independent/dependent

linear
log
byRegion
flat
chargedParticle

might look like:

• axes

– axis index=0, label="energy_in", unit="eV",
interpolation="linear,linear", frame="lab"

– axis index=1, label="mu", unit="",
interpolation="linear,log",
frame="centerOfMass"

– axis index=2, label="P(mu|energy_in)"
unit="", frame="centerOfMass"

For the “energy_in” axis, the interpolation “lin-
ear,linear” is equivalent to ENDF INT 2, and the inter-
polation “linear,log” on the “mu” axis is equivalent to
ENDF INT 4. As with ENDF, the interpolation for each
independent axis defines how to interpolate while moving
along that axis.

B. One-dimensional function containers

In a nuclear data evaluation, it is common to store
a one-dimensional function y(x) (e.g., σ(E) or ν̄(E)) as
numerical data; that is, as a list of (xi, yi) pairs where
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xi < xi+1. Herein, this type of data will be called one-
dimensional pointwise data. In GND, an element con-
tainer for one-dimensional pointwise data has attributes
named ‘xData’, ‘length’ and ‘accuracy’, and elements
named ‘axes’ and ‘data’. The value for the ‘xData’ at-
tribute must be "XYs". The ‘data’ element contains the
pointwise data. As example, cross section data evaluated
at the two energy points (1e-5 eV, 1.21e+4 b) and (0.01
eV, 12.1 b) would be represented as

• pointwise xData="XYs", length=2,
accuracy=0.001

– axes
∗ axis index=0, label="energy_in",

unit="eV", interpolation="log,log",
frame="lab"

∗ axis index=1, label="crossSection",
unit="b", frame="lab"

– data: 1e-5 1.21e+4 0.01 12.1

The attribute ‘accuracy’ has no equivalent in ENDF or
ENDL. This attribute is required whenever changing an
interpolation or doing computations on the data, in order
to preserve the original accuracy. For example, in the
sample above the cross section uses log-log interpolation
to represent the 1/E behavior of a cross section at low
energy. If this cross section is converted to linear-linear
interpolation by a processing code or plotting tool, extra
points must be inserted between 1e-5 eV and 1e-2 eV in
order to preserve the original 1/E behavior. The attribute
‘accuracy=0.001’ indicates that enough points must be
added to ensure that a linear-linear representation of the
data can be interpolated anywhere in this region, and still
agree to 0.1% or better with the original log-log accuracy
as specified by the evaluator.

The pointwise XYs dataset uses the same interpola-
tion throughout its domain. Some data, however, are
better described using different interpolations in different
regions. GND defines a ‘piecewise’ XYs data container,
called ‘regionsXYs’, which contains one XYs container for
each interpolation region. All the regions share the same
axes, but each region specifies its own interpolation. The
data for all adjacent regions must overlap at exactly one
point, that is, the last x-value of the lower region must
equal the first x-value of the higher region. The y-values
of these two points need not agree, which allows for a
discontinuous step function.

C. Two-dimensional function containers

Two-dimensional functions y(w, x) (with two indepen-
dent axes (w and x) and one dependent axis y(w, x)) are
used in GND for storing probability distributions such as
the angular distribution, P (µ|E). Here, the probability
may be isotropic at low incident energies but strongly
angle-dependent at high incident energies. The most ef-
ficient way of storing these data is therefore to allow a

different list of µ-values for each incident energy. Thus,
in both ENDF and GND two-dimensional data are stored
as a list of (wi, yi(x)) pairs; that is, for a given w value
(corresponding to incident energy in the example above),
the data are given as a one-dimensional function with
only as many points are necessary for that w value.
For this type of data, GND defines the W_XYs ele-

ment container which consists of a list of one-dimensional
pointwise data (i.e., an XYs type element) and their as-
sociated w values by ascending w. An W_XYs element
contains the attribute ‘xData’ with the value "W_XYs"
as well as an axes element and a list of XYs elements each
with a ‘value’ attribute. The ‘value’ attribute contains
the numerical w value for the XYs element. A simple
example of an angular distribution with data at incident
energies 1e-05 eV and 1000.0 eV may look like:

• pointwise xData="W_XYs"

– axes

∗ axis label="energy_in", unit="eV"
∗ axis label="mu", unit=""
∗ axis label="P(mu|energy_in) unit=""

– energy_in value=1e-05 index=0

∗ data -1 0.5 1 0.5

– energy_in value=1000.0 index=1

∗ data -1 0.6 0 0.4 1 0.6

For brevity, attributes describing the frame, interpolation
and accuracy have been omitted. Note, the XYs elements
are named per the label of the w axis ("energy_in" for
this example). The ‘W_XYs’ data container does not
require that each XYs container comprise the same set of
x values.

D. Three-dimensional function containers

A three-dimensional function y(v, w, x) has three inde-
pendent axes (v, w and x) and a dependent axis y(v, w, x)
(a nuclear data example is the double differential differ-
ential P (E′, µ|E), see Eq. 1). For the same reasons de-
scribed in Sec. VIC, both ENDF and GND store this
three-dimensional data as a list of (vi, yi(w, x)) where the
two-dimensional data yi(w, x) are stored as a list of (wi,
yi(x)) and contain only enough w values to adequately
describe the distribution for v. For this type of data,
GND defines the V_W_XYs container which consists of
a list of W_XYs containers and their associated v value
in ascending v. A V_W_XYs element contains the at-
tribute ‘xData’ with the value "V_W_XYs" as well as an
axes element and a list of W_XYs elements each with a
‘value’ attribute. The ‘value’ attribute contains the nu-
merical v value for the W_XYs element.
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E. Legendre containers

Some distributions representable with a W_XYs con-
tainer can also be represented using a variant of a Legen-
dre series. As example, the angular distribution P (µ|E)
can be expressed as P (µ|E) =

∑∞
l=0 Cl(E)Pl(µ) where

the Cl(E)’s are energy dependent Legendre coefficients.
The GND container W_XYs_LegendreSeries is designed
to hold W_XYs data where the x data represents an
angle from 0 to π (e.g., µ = cos(θ) for −1 ≤ µ ≤ 1).
This is very similar to W_XYs data except that the
XYs elements can be represented as a Legendre series.
Similarly, the V_W_XYs container has the associated
Legendre container V_W_XYs_LegendreSeries for data
where the inner most containers (the XYs containers) can
be represented as a Legendre series. A nuclear data ex-
ample of this would be a double differential of the form
P (E′, µ|E) =

∑∞
l=0 Cl(E,E′)Pl(µ).

F. Table and matrix containers

‘XYs’, ‘W_XYs’ and ‘V_W_XYs’ are general data
containers for numerically representing functions of one,
two and three dimensions, respectively. They provide an
efficient way of storing much of the data that appears in a
nuclear reaction evaluation. A few other data containers
are still required, however, including the ‘table’ and the
‘matrix’.

A GND table element contains attributes listing the
number of rows and columns, followed by a list of col-
umn headers with a label and unit for each column, and
finally a list of data points with length rows× columns.
Currently, every cell in the table must contain a numeric
value, although "unknown" or "NAN" table values may
also be supported in the future. Tables are used in GND
for storing resonance data. A table is convenient for this
purpose since the same model parameters must be given
for each resonance.

Matrices are used in GND to store covariances and
grouped deterministic transport data. A matrix requires
the following attributes: number of ‘rows’ and ‘columns’,
and ‘form’ which determines how the matrix is repre-
sented. The matrix forms that are currently allowed in
GND are:

• ‘diagonal’, in which only diagonal elements must be
stored

• ‘symmetric’, in which the lower-diagonal portion of
the matrix is stored

• ‘asymmetric’, requiring the full matrix

• ‘sparse_symmetric’, and

• ‘sparse_asymmetric’, in which non-zero matrix el-
ements are stored along with row and column in-
dices.

These matrix forms all correspond to existing choices
within ENDF (although we note that sparse matrices are
currently only allowed in ENDF for storing resonance pa-
rameter covariances). An example of a symmetric matrix
is shown below:

• matrix rows=3 columns=3 form="symmetric"

– data

15.7
-0.82 3.21
1.42 -0.24 1.67

In the future, other matrix forms may be added in or-
der to save space in GND. For example, if most of the
eigenvalues of a matrix are zero or very small, GND could
save space by only storing the large eigenvalues and corre-
sponding eigenvectors. Space can also be saved by using
a binary format to store compressed matrices.

The most common application of the ‘matrix’ data type
is for representing covariances between reaction cross sec-
tions or distributions at different incident energies. These
covariances must contain not only a matrix, but also a de-
scription of each axis. The matrix axes are similar to the
axes for XYs datasets, except that in addition to the la-
bel, unit and frame attributes the covariance matrix axes
also contain a list of energy boundaries.

In this section the most common data containers that
appear in GND files were presented. These data contain-
ers are used repeatedly throughout GND files for storing
all types of data that appear in nuclear reaction evalua-
tions. In addition, these data containers have been de-
signed to be general-purpose, so that in the future they
could be used to store other types of nuclear data in-
cluding experimental data and nuclear structure data. In
that case, re-using general purpose data containers is ex-
pected to simplify the maintenance of all these nuclear
data libraries.

VII. ASSOCIATED TOOLS FOR GND

The GND format alone is not particularly useful with-
out a suite of tools that can be used to interact with and
manipulate the data. We have developed several code
tools to enable users to create, test and display nuclear
data. Additionally, we are developing access routines to
enable the use of GND by transport codes and other ap-
plications. In this section, we will discuss progress to-
wards building a set of associated tools for GND.

Many of the associated tools described here require
the use of the code framework ‘Fudge’ which is main-
tained by the Computational Nuclear Physics group at
LLNL and is available for free download from the Na-
tional Nuclear Data Center collaboration server at nd-
clx4.bnl.gov/gf/project/gnd. Readers interested in trans-
lating an ENDF file into GND or making use of the other
associated tools should download Fudge and refer to the
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documentation that has been provided along with the
software for instructions on getting started.

A. Resonance Reconstruction

In both ENDF and GND, resonance parameters can
be used as a compact way to represent the rapidly fluc-
tuating cross section at low incident energies. Both for-
mats require the ability to reconstruct these resonance
parameters in order to obtain a pointwise cross section.
For ENDF files, the codes LINEAR and RECENT [11]
handle resonance reconstruction, and for GND the
code ‘fudgeReconstructResonances’ fills the same need.
fudgeReconstructResonances is written mainly in Python
(some numerically-intensive portions are written in C for
better performance). It handles reconstructing both re-
solved and unresolved resonance parameters, including
nearly all formats currently supported in ENDF (Single-
and Multi-level Breit Wigner, Reich-Moore and the R-
Matrix Limited formulae are all supported. The Adler-
Adler formalism is not currently supported, since it ap-
pears to be unused in modern libraries). After recon-
structing resonances, the code adds the resonance con-
tribution to the background cross section, to obtain a
pointwise cross section spanning both resonance and fast
regions. One advantage of GND over ENDF is that the
new pointwise reconstructed cross section is stored as a
new cross section form, without overwriting the original

FIG. 3: Plot of the 35Cl (n,p) cross section, reconstructed from
resonance parameters by the Fudge code ‘fudgeReconstruct-
Resonances’ using the R-Matrix limited formalism. The cross
section reconstructed by the code RECENT is also shown, as
well as the percent difference between the two. While differ-
ences arise from the two codes using different sets of incident
energies, the results agree to within the calculated tolerance
of 0.1%.

data inputted by the evaluator.
An example of a cross section reconstructed from res-

onance parameters using fudgeReconstructResonances is
shown in Fig. 3. The resonance parameters for this eval-
uation use the R-Matrix limited formalism (MF 2, LRF
7 in ENDF). For comparison, the result of reconstructing
using the 2010 version of RECENT is also shown. In both
codes, the cross section was reconstructed to a ‘tolerance’
of 0.001, meaning that linear interpolation anywhere in
the resonance region should agree to 0.1% or better with
the analytic value. As seen from the relative difference on
Fig. 3, the two codes agree to within 0.1% at all energies.

B. ‘toPointwiseLinear’

Since GND supports many different options for stor-
ing data, including piecewise functions and parameter-
ized forms, a simple way for converting all these different
forms into pointwise, linearly-interpolable data is needed.
In Fudge, the ‘toPointwiseLinear’ methods fill this need.
All data types implement toPointwiseLinear except for
the Madland-Nix energy spectra. If the original data
were already in pointwise linear form, toPointwiseLin-
ear returns a copy so that the user can make modifica-
tions without impacting the original. After conversion to
pointwise linear form, data can be used for calculations
or for plotting. The example in Fig. 4 shows a Kalbach-
Mann double-differential distribution in the center-of-
mass frame for neutrons from the reaction 11B(n,2n)10B
after conversion to pointwise linear.
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FIG. 4: Energy-angular distribution for outgoing neutrons
from the reaction ‘n + B11 → 2n + B10’, at incident neutron
energy 20 MeV. The distribution ‘nativeData’ for this reac-
tion is Kalbach-Mann [12]. The distribution was converted to
pointwise form using the toPointwiseLinear method.

C. Checking codes

Quality assurance is one of the critical requirements
when designing a structure for nuclear data. Quality as-
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surance includes testing files to ensure they are properly
formatted, and also checking that they contain consistent,
physically realistic nuclear data. For ENDF-6 formatted
files, quality assurance has depended to a large extent
on the ENDF Utility Codes [13], including CHECKR for
format checking, LINEAR for converting all interpola-
tions to linear, and FIZCON and PSYCHE for testing
the physics content. In the next few sections we discuss
codes intended to provide the same types of quality as-
surance for GND.

The tools discussed in this section are specific to par-
ticular implementations of GND. Most of these tools de-
pend on the Fudge software package, or are specific to
GND/XML.

1. XML Schema

An important requirement for a nuclear data format
is a tool for automatically checking that files correctly
follow the format. For ENDF-6 formatted files, the code
‘CHECKR’ was designed to fill this need. CHECKR is
used to test ENDF files to ensure they follow the ENDF-6
format, and to give informative messages if format errors
are encountered. The code parses an entire ENDF-6 file,
checking for format-specific problems such as illegal val-
ues, missing sections, and disagreements between integer
flags and the datasets they describe.

Checking GND/XML formatted data is made rela-
tively simple by leveraging an existing technology called
the ‘XML schema language’ [14]. This language is one
of many tools that have been created for use with XML
files, due to the popularity of XML as a format for storing
data. An XML schema for GND has been created, and
serves to define the hierarchy that must be followed in or-
der for a GND/XML file to be ‘correct’. For example, the
schema indicates that a reactionSuite must first contain
a styles element, followed by documentations, particles,
and so on (following the layout described in Sec. II). For
each of those elements in turn, the schema defines which
attributes, subelements and datasets are required, and
which are optional.

The XML schema for GND/XML is distributed
along with Fudge. The schema (found in
‘fudge/gnd/gnd.xsd’) can be used on UNIX systems
with the built-in command-line tool ‘xmllint’ (‘XML line
interpreter’) to check a GND/XML file for format errors.
For example:

xmllint --schema gnd.xsd GND_file.xml

If format errors are discovered in the file, xmllint will
print an informative message, including line and column
numbers, for each error. Once a file passes this step with-
out errors, it has been ‘validated’ by the schema and can
be considered a properly-formatted GND/XML file. This
automatic format checking is a valuable tool for ensuring
the quality of a nuclear data library.

2. Checking physics content

In addition to checking for format errors in GND, we
also require tools to help ensure that the file contains
physically realistic data. For ENDF files, this physics
checking has been performed by the combination of two
codes, FIZCON and PSYCHE. Together, they check for
problems such as unnormalized probability distributions,
negative cross sections or multiplicities, non-conservation
of energy, incomplete quantities (not covering the full en-
ergy span required for an evaluation), and so on. Errors
uncovered by FIZCON and PSYCHE are reported along
with the section (identified by MF and MT numbers)
where they occur.

Physics checking is also integrated into the Fudge im-
plementation of GND. In this case, physics checking is
implemented with ‘check’ methods that are defined at
several different levels of the Python classes representing
the GND hierarchy. When the user checks a reaction-
Suite element, the check method first reconstructs reso-
nances, calculates average energy per product, and then
proceeds to call the check method of each reaction el-
ement within the reactionSuite. The reaction elements
check their cross sections and their list of outgoing prod-
ucts including distributions and multiplicities. Last, each
reaction is checked for energy balance. That is, whether
the sum of the average kinetic energy to the products is
equal to the available energy (Q-value plus kinetic energy
of the projectile) for the reaction.

Using Fudge to check GND/XML formatted files re-
quires only three lines in Python:

>>> from fudge.gnd import reactionSuite
>>> r = reactionSuite.readXML("gnd_file.xml")
>>> print( r.check() )

An example of the types of warnings produced from the
check methods is shown below for 232Th of the ENDF/B-
VII.1 evaluation. In this example, the 232Th ENDF eval-
uation was first converted into GND and then the check
method was called and returned the following warnings:

>>> print( r.check() )
ReactionSuite: n + Th232

Reaction label 2: n + Th232_e2
Product: n

Distribution angular - LegendrePointwise:
WARNING: Domain does not match the
cross section domain:

...
Reaction label 44: n + H1 + Ac231 + gamma

WARNING: Calculated and tabulated Q-values
disagree: -7162308.98 eV vs -7.755e6 eV!

Product: H1
Distribution Legendre - LegendrePointwise:

WARNING: Unnormalized distribution!
At energy_in = 2.1e7 eV (index 20),
integral = 1.00001190074

...
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TABLE XVI: Partial list of the tests performed by Fudge when using the reactionSuite and covarianceSuite physics ‘check’
methods, along with the GND element where each test is implemented.

Test GND element
Are any errors encountered during resonance reconstruction? reactionSuite
For each complete reaction (see Sec. VE), do Z and A balance? reaction
Does the Q-value agree with value computed from particle masses? reaction
Do errors appear when computing average energy/momentum for products? reaction
Does energy balance (sum of energy deposited to products equal to incident energy plus Q)? reaction
Is the cross section threshold consistent with the Q-value? crossSection
Does the cross section span the interval from threshold up to the maximum (default maximum=20 MeV)? crossSection
Can the cross section nativeData form be converted to pointwise, linearly interpolable form? crossSection
Does the cross section contain any negative values? crossSection
Do all ‘transportable’ particles have distribution information? product
Are any product multiplicities negative? multiplicity
Does multiplicity domain agree with cross section domain? multiplicity
Does distribution domain agree with cross section domain? distribution
Do distribution frames make sense (lab vs. center of mass)? distribution
Are distributions normalized? distribution
Are any probabilities less than 0? distribution
Does the matrix have any negative eigenvalues? Is the variance positive? covarianceMatrix
Does the matrix have very small eigenvalues? covarianceMatrix
Are variances (diagonal of the matrix) unreasonably large or small? covarianceMatrix

The first warning indicates that for the reaction with
output channel "n + Th232_e2" (ENDF MT 52), the
cross section is given on a different domain than the distri-
bution for the outgoing neutron. The other two warnings
are for the reaction with output channel "n + H1 + Ac231
+ gamma" (ENDF MT 28) where there is a discrepancy
between the listed Q-value and the Q-value calculated
from particle masses, and an unnormalized probability
distribution for the proton.

In addition to the reactionSuite check code, Fudge
also includes an set of checks that apply to the covari-
anceSuite. These are implemented in the same fashion
as the reactionSuite checks (that is, ‘check’ methods are
defined for several of the Python classes making up the
covarianceSuite hierarchy, and are called in a nested hier-
archy until all sections in the covarianceSuite have been
checked).

Many possible warnings may be raised by the reac-
tionSuite and covarianceSuite checking codes. They are
listed in Table XVI. Many of the tests listed in this ta-
ble can be modified based on the needs of the user. For
example, by default Fudge raises a warning if the cross
section does not extend up to 20 MeV, but this limit can
be increased or decreased by adding extra options when
calling the check method. Also, the tolerances used when
checking probability distribution normalizations, check-
ing energy balance, and checking for agreement between
Q-value and cross section thresholds can all be modified
by user-supplied options.

In addition to checking, Fudge has some capabilities
for automatically fixing data where possible. For exam-
ple, probability distributions can be renormalized. Un-
fortunately, many of the problems that occur in evalu-

ated nuclear data are not amenable to automatic fixing,
instead requiring some manual intervention by the eval-
uator.

The checking methods are expected to play a central
role in quality assurance for future evaluated nuclear data
libraries, and have already contributed to finding many
issues in the ENDF/B-VII.1 library before its final re-
lease.

D. Plotting Tools

Fudge provides two separate plotting packages. The
first uses Gnuplot and the Python wrapper package Gnu-
plot.py to provide in-line plotting for all Fudge ‘XYs’,
‘W_XYs’ and ‘V_W_XYs’ data containers. This plot-
ter is invoked by calling the ‘plot’ method of any ‘XYs’,
‘W_XYs’ and ‘V_W_XYs’ data container. For example,
in an interactive Python session the following commands
plot the total cross section from the file ‘zr90.endf’:

>>> from fudge.legacy.converting \
... import endfFileToGND as endf2gnd
>>> r,c = endf2gnd.endfFileToGND( "zr90.endf" )
>>> r.reconstructResonances()
>>> r.getReaction("total").crossSection \
... .toPointwiseLinear().plot()

A screen snapshot of this plot is shown in Fig. 5.
Fudge also provides a Matplotlib-based plotting inter-

face. To use this plotting interface the Python packages
Numpy and Matplotlib have to be installed.

A standalone script called pltUtil.py has been provided
in the ‘examples’ directory of Fudge, which plots cross

19



Generalized Nuclear Data: a New Struc . . . NUCLEAR DATA SHEETS C.M. Mattoon et al.

FIG. 5: Screen snapshot of a typical interactive plot win-
dow from the Gnuplot based in-line ‘plot’ method showing
the ENDF/B-VII.1 90Zr(n,tot) cross section.

sections from ENDF-6 formatted files by converting the
files into GND within python. This script, when cou-
pled with the x4i package [15], can plot experimental
data from the EXFOR database [16] along side the eval-
uated data in an ENDF file. The script automatically re-
constructs resonances and converts covariances into un-
certainty bands. It can also interpret lumped reaction
covariances to provide summed cross sections and un-
certainty bands. Fig. 6 shows a screen snapshot from
pltUtil.py used to view the 241Am(n,2n)240Am cross sec-
tion. In this figure, the evaluated data are given as a
linear spline, hence it looks smooth. The covariance is
given relative to values of the spline function at the lin-
ear spline nodes, but the covariance itself is grouped, with
group boundaries aligning with the spline nodes. There-
fore, the uncertainty jumps as one goes from one group
to the next.

VIII. TRANSLATING ENDF-6 FORMATTED
FILES TO AND FROM GND

One of the major goals of the GND project has been
to provide backwards compatibility with the ENDF-
6 format. This is motivated partly by the fact that,
since many existing codes and programs that use ENDF-
formatted data are currently in use for important ap-
plications world-wide, users will likely adopt a slow and
cautious approach to moving away from ENDF. GND is
expected to co-exist alongside the ENDF format for many
years, during which the ability to translate back and forth
will be an important way for GND to start being actively
used and to gain acceptance by the broader nuclear data
community. In this section, we describe the current sta-
tus of the translation tools, which we hope will facilitate
the transition to GND.

The Fudge software package includes a function called

‘endfFileToGND’, that reads an ENDF-6 formatted file,
and translates it into a Python representation of the
GND structure. Users may prefer to use the Fudge tool
‘rePrint.py’, found in the ‘bin’ directory of a Fudge dis-
tribution. This tool calls endfFileToGND to translate an
ENDF file, and outputs the results to an XML file. In ad-
dition, rePrint.py translates from GND back into ENDF
(hence the name ‘rePrint’) so that the data can easily be
compared with the original file to discover what was lost
or modified during this two-way translation.
The code ‘rePrint.py’ produces several different out-

put files. The most important are ‘test.endf6.xml’
(containing the new reactionSuite in GND/XML for-
mat), ‘test.endf6-covar.xml’ (containing the covariance-
Suite in GND/XML), and ‘test.endf6.noLineNumbers’
(an ENDF-formatted file produced by translating GND
back into ENDF-6 format). The original ENDF data is
also rewritten with line numbers removed for easier com-
parison. The original and re-printed ENDF-6 files can
be compared using tools like ‘diff’ or ‘kompare’ in order
to discover what differences were produced during trans-
lation. Readers who are interested in testing out GND
are encouraged to start by translating ENDF files to see
what is preserved or changed during the translation, and
to compare how data are represented in ENDF and in
GND.
An ENDF-6 formatted file can be translated into GND

and then retranslated back to ENDF. The retranslated
ENDF-6 formatted file is nearly identical to the origi-
nal. Some important differences remain, however, often
related to the use of less common ENDF-6 format op-
tions. Since some of these options are not yet supported
by GND, these types of data will be missing from the re-
translated ENDF-6 file. Examples include covariance ma-
trices for the unresolved resonance region (MF 32, LRU
2 in ENDF) and production of beta-delayed gammas fol-
lowing fission (MF 1, MT 460 in ENDF). These data
types will be handled in the future as time and manpower
permit. Some other differences, however, arise due to de-
sign choices that were made in implementing GND. These
differences will not disappear in the future. Some of the
most common differences that appear after translating
back and forth between ENDF and GND are discussed
below.

A. Converting pointwise to piecewise

One difference that often shows up after translating to
and from GND is the introduction of additional piecewise
regions. This change is due to a design choice made when
implementing GND. In GND, the independent axis of
a pointwise function is not allowed to contain the same
point more than once. This choice was made in order to
prevent users from having to deal with multiple-valued
functions. If evaluators wish to use a step function in
GND, they must either implement it at the boundary
between two piecewise regions, or provide two points in
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FIG. 6: Screen snapshot of a typical plot window from the Matplotlib based pltUtil.py script included in the Fudge package.
This script, when coupled with the x4i package, can plot EXFOR data along side the evaluated data in an ENDF file. This
figure shows the 241Am(n,2n) cross section from ENDF/B-VII.1.

a pointwise region with a small epsilon between the x-
values.

This design choice is more restrictive than ENDF-6,
in which two or more points with the same x-value some-
times appear. For example, identical x-values may appear
in energy-dependent cross section or multiplicity data. As
a result, when these files are translated to GND and back,
the resulting ENDF-6 formatted file will differ from the
original, containing two or more piecewise regions in what
was originally a single region. An example of this type of
difference is seen in Table XVII. The reader should note
that the new data still uses the same interpolation as the
original, it is simply broken up into two piecewise regions.
This change will not have an impact when using the data
in transport codes as long as the ENDF processing codes
are properly interpreting the ENDF format.

B. Particle masses

Another common difference between the original and
re-printed ENDF files is in particle masses. This differ-
ence arises since the ENDF-6 format stores the masses of
the target, projectile and reaction products (given as mul-
tiples of the mass of the neutron) many times throughout
the file. Frequently, these values are inconsistent, some-
times varying between different MF sections, and some-

TABLE XVII: Sample ENDF-formatted interpolation data
before and after translating from GND (this example is taken
from the ENDF/B-VII.1 neutron sub-library, MAT 2525, MF
3, MT 2). Before translation, all 84 points are in the same
interpolation region, but afterwards they are split up into two
separate regions. In the re-printed ENDF file, only the inter-
polation information changes; the data are unaffected.

Original ENDF file:
2.505500+4 5.446610+1 0 0 0 0
0.000000+0 0.000000+0 0 0 1 84

84 2 0 0 0 0
1.000000-5 0.000000+0 1.250000+5 0.000000+0 1.250000+5 5.729550+0

After translation:
2.505500+4 5.446610+1 0 0 0 0
0.000000+0 0.000000+0 0 0 2 84

2 2 84 2 0 0
1.000000-5 0.000000+0 1.250000+5 0.000000+0 1.250000+5 5.729550+0

times changing even within the same section. Based on
discussions with many ENDF evaluators, we have come
to the conclusion that these discrepancies likely appeared
gradually, as different sections of ENDF files were up-
dated but not kept consistent with other sections. This
has unfortunately led to a situation where the original
value chosen by the evaluator is no longer clear.
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In GND, we propose eliminating this type of uncer-
tainty by only storing the mass of each particle once in
the file, either in the particles element at the start of the
file, or in the future in an external particle database like
that described in Sec. IXF. This change is already being
implemented by the endfFileToGND translation code: if
an ENDF file contains multiple masses for a particle, the
translator chooses the value that appears most often in
the file. As a result, the discrepant particle masses will
be overwritten in the reprinted ENDF file. This change
means that evaluators seeking to update an old evalua-
tion should either use the same values used in the original
version, or commit to updating the mass, Q-values and
thresholds throughout the entire evaluation.

C. Handling ENDF-6 format errors

Some ENDF files do not follow the ENDF-6 format
as described in the current manual [1]. These files cause
problems both for end users, and for translation codes like
endfFileToGND. Some common format errors that have
been encountered while developing the ENDF translator
include: energy-dependent multiplicities given for reac-
tions like (n,2n) where the multiplicity should be con-
stant, Inf or NaN appearing in ENDF files, and many
cases where incident energies are not correctly sorted in
ascending order. Other common problems are listed in
Table XVIII. The endfFileToGND translator will pro-
cess the ENDF file, skipping any sections which it de-
tects as having format issues, as it is beyond the scope
of a translation code to fix ENDF-6 format errors. Af-
ter translating the ENDF file, endfFileToGND will print
all errors detected. The translator will then either abort
(by raising a Python ‘Exception’) or will return a GND
structure with the bad data sections missing, depend-
ing on value of the ‘skipBadData’ option. When using
‘rePrint.py’, the ‘skipBadData’ option can be turned on
by adding the ‘--skipBadData’ as

python rePrint.py --skipBadData file.endf

With this option, the translator will return a GND re-
actionSuite even if errors are encountered during trans-
lation. The reader should note, however, that when us-
ing this option, format errors usually result in complete
sections of ENDF data being skipped by the translation
code, hence those sections will be missing from the fi-
nal GND file and the re-printed ENDF file. As much
as possible, the warnings and errors encountered during
translation of ENDF files should be corrected in the orig-
inal ENDF file in order to ensure the final GND file is
correct.

Since ‘endfFileToGND’ attempts to strictly adhere to
the ENDF-6 format as stated in the format manual, it
played a significant role in cleaning up issues prior to the
release of the ENDF/B-VII.1 library [17]. Each beta-
release prior to the official VII.1 release was tested by
converting to GND. All format errors discovered during

this process were reported back to evaluators and to the
library maintainers. As a result, most of these format
errors (including those seen in Table XVIII) were fixed in
time for the official release of ENDF/B-VII.1.

IX. FUTURE WORK

Version 1.1 of the GND structure is already available
to the nuclear data community for testing. More work
remains, however, before GND can begin to be adopted
by the community as a replacement for older formats. In
this section, some of the ongoing work towards improving
GND is described. This work includes further additions
and revisions to the structure of GND, tools for process-
ing the data into forms suitable for use in transport sim-
ulation codes, access routines that will allow users to ef-
ficiently use GND in their codes, and also possible future
projects that could build on the success of GND in han-
dling evaluated nuclear reaction data, by changing how
experimental data and nuclear structure information are
stored.

A. Finalizing the Structure of GND

The current versions of Fudge and GND represent
an effort by LLNL to propose a new standard way to
store nuclear reaction data. GND now needs feedback
and criticism from the international community in or-
der to ensure that it meets the needs of users. A new
WPEC subgroup (number 38) has been formed with the
goal of modernizing the storage of nuclear data, and this
subgroup is expected to hasten the process of collecting
user feedback and reviews, and hasten the transition to-
ward a new international standard [18]. Based on this
engagement with the broader community, changes to the
GND structure will likely be made before this transition is
complete. Once both CSEWG and the international com-
munity are satisfied with the GND structure and tools,
ENDF libraries will begin to be officially released in GND.
CSEWG anticipates many years in which ENDF libraries
will be released in both the GND and the legacy ENDF-6
formats (this process is possible since translating between
the formats is straightforward using Fudge). This period
of parallel releases of the ENDF library will allow other
labs to port their processing codes (including NJOY [5]
from Los Alamos and AMPX from Oak Ridge [19]) and
other tools (including websites like those hosted by the
National Nuclear Data Center) to use GND.

GND must also be extended to handle more of the
evaluated nuclear reaction data available in major li-
braries. Development of GND originally focused on
neutron-induced reactions, and has since been extended
to also handle incident gammas and charged-particles.
As seen in Table XIX, several other sub-libraries are also
available and should be addressed by GND.
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TABLE XVIII: Some common format problems encountered when translating ENDF-6 files into GND.
-Incident energies not sorted in ascending order, usually for Legendre coefficients (MF 4, LTT 1) or Kalbach-Mann
systematics (MF 6, LAW 1, LANG 2)
-MF 2 and MF 32 both contain a list of resonance parameters. These are redundant and should always be
identical, but sometimes they contain discrepancies.
-Mismatch between excited state energies listed in different parts of the file (MF 4 versus MF 12, for example).
-Product disagrees with MT. For example, 186W(n,t 2α) should produce 176Tm, but is listed as producing 176Yb.
-Disagreement between the number of gammas listed in MF 12 or MF 13 and the number listed in MF 14.
-Covariance matrices using the sparse (LCOMP 2) format, attempting to assign to an out-of-bounds matrix
element.

TABLE XIX: Status of the GND implementation of features
needed in each ENDF/B-VII sublibrary

No. NSUB Sublibrary Status
1 0 Photonuclear Fully implemented
2 3 Photo-atomic Not implemented
3 4 Radioactive decay Needs final structure

format
4 5 Spontaneous

fission
Not implemented

yields
5 6 Atomic relaxation Not implemented
6 10 Neutron Fully implemented
7 11 Neutron fission

yields
Not implemented

8 12 Thermal
scattering

Not implemented

9 19 Standards Fully implemented
10 113 Electro-atomic Not implemented
11 10010 Proton Fully implemented
12 10020 Deuteron Fully implemented
13 10030 Triton Fully implemented
14 20030 3He Fully implemented

N/A N/A Alpha Fully implemented

B. Processing codes for GND

As the structure of evaluated data in GND becomes
finalized, the next important step is to enable processing
the data for use in transport calculations. One important
advantage of GND is that processed data (i.e., data suit-
able for Monte Carlo or deterministic transport codes)
can be stored in the same hierarchy as the original eval-
uated data.

The Fudge infrastructure can currently handle most of
the processing of a GND file. For example, Fudge con-
tains methods for converting GND evaluated data into
grouped data suitable for deterministic transport, and
for heating the cross section data to a desired temper-
ature. Fudge also supports processing parameterized
forms of data, such as Kalbach/Mann and Watt distri-
butions, into transfer matrices suitable for determinis-
tic transport. With the exception of Coulomb Scatter-
ing (ENDF data MF 6, LAW 5) which has a singularity
issue, all ENDF energy-angle distribution forms can be

processed to grouped, deterministic transfer matrices.
The transfer matrices resulting from converting ENDF

files to GND and then processing with Fudge have be-
gun to be compared to the equivalent matrices produced
by processing with NJOY. For example, Fig. 7 shows
the absolute and relative differences between the 235U
L=0 fission transfer matrices produced by Fudge and
by NJOY. The largest absolute disagreement appears at
small incident energy, where NJOY assumes a constant
outgoing spectra for several incident energy groups. The
largest relative difference between the two matrices is still
less than 0.1%, however. This example is a fairly simple
case, since the original neutron distributions were given
in pointwise form. Transfer matrices produced from pa-
rameterized distribution forms do show some substantial
differences when compared to NJOY, indicating that the
Fudge processing of those parameterized forms still re-
quires some work.
The Fudge package also contains methods for calcu-

lating the average energy (similar to the KERMA data
in ACE files) and momentum of a product. These data
are used in deterministic and expected-value Monte Carlo
transport simulations.

C. Transport code access routines (GIDI)

Once GND data can be processed, optimized access
routines are also needed in order for transport codes to
start taking advantage of the new structure. While the
Fudge package provides a high-level interface for read-
ing, writing, viewing, checking and manipulating GND
files, it is mainly written in the Python programming
language which can be significantly slower than low-level
languages like C. The Python code is much easier to write
and smaller, but interfacing with transport codes will re-
quire access routines written in a low-level language for
speed and memory reasons. A new application program-
ming interface, or API, called GIDI (General Interaction
Data Interface) is being developed to read a GND file.
The core of GIDI will be written in C, and wrappers for
other languages like C++ will also be provided in the
API.
It is anticipated that in the near term GND files will

only exist in the meta-languages XML and HDF5, and
both will be supported by GIDI.
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FIG. 7: Absolute (a) and relative (b) differences (in %) be-
tween the 235U (n,fission) transfer matrices produced by pro-
cessing with Fudge and with NJOY. Spurious differences ap-
pear in white at small outgoing energies in (b) since NJOY
rounds these matrix elements down to zero. At all other inci-
dent and outgoing energies the codes agree to 0.1% or better.

D. Uncertainty quantification tools: Monte Carlo
and deterministic uncertainty propagation

LLNL developed a tool called kiwi [20] that performs
Monte Carlo uncertainty propagation using nuclear co-
variance data. This tool samples directly from the covari-
ances in an evaluation to produce realizations of evalua-
tions consistent with the underlying covariance. This tool
was used successfully in a variety of uncertainty quan-

tification studies at LLNL. Unfortunately, Monte Carlo
uncertainty propagation is time and computing resource
intensive and can only practically vary tens of parame-
ters simultaneously. Typical actinide covariances contain
hundreds of rows and we can only effectively vary a small
subset of the data.

The sensitivity matrix approach, in which one lin-
earizes the response of a system to variations in nuclear
data, allows one to propagate much more data in a un-
certainty quantification study. This approach is very suc-
cessful for problems that can be linearized, but can re-
sult in unrealistic answers when a system has a strong
non-linear response to changes in the nuclear data. The
nuclear data community is seeking to develop hybrid ap-
proaches to uncertainty quantification that marries the
two approaches. Once this effort is sufficiently well de-
veloped, we will seek to port both the legacy kiwi system
as well as newly developed uncertainty propagation tools
to Fudge.

E. Evaluator tools: creating new GND evaluations
directly from Nuclear Reaction Modeling Codes

LLNL and BNL are both developing tools to trans-
late the output of the popular Nuclear Reaction model-
ing codes TALYS and EMPIRE into GND format. Both
projects anticipate integration of their scripts into the
Fudge code base sometime in FY13-FY14.

F. External particle database

As mentioned in Sec. VIII B, GND unifies all particle
information (nuclear masses, levels, and gamma decays)
into a single element, eliminating repetitious data. How-
ever, since each reactionSuite still stores its own copy of
particle information, there is still a possibility for discrep-
ancies between particle information in different evalua-
tions. In the future, libraries could be made more uniform
by allowing GND files to refer to an external “Properties
of Particles” (POP) database.

POP is designed to allow storing all information for
every particle involved in an evaluated nuclear reaction
library in a single place, so that each evaluation can link
to the same data. Information provided in POP will in-
clude properties of nuclei, gammas and electrons (along
with other particles such as pions, as evaluations extend
to higher energies).

A version of POP has already been implemented by
adopting masses from the Atomic Mass Evaluation ver-
sion 2003 (AME2003) [21], and level schemes and gamma
decays from the Reference Input Parameter Library
(RIPL-3) [22]. The data are stored in a hierarchy similar
to the structure seen in Sec. VIII B. An example of how
POP stores nuclear masses and energy levels is shown in
Table XX.

The naming of elements and attributes in POP are cho-
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TABLE XX: This table describes the ‘nucleus’ element from
the POP database. For each nucleus (identified by atomic
symbol and mass number) the mass element includes all the
information provided in AME2003, and the nuclearLevels el-
ement contains level schemes taken from the RIPL-3 library.

• nucleus SymbolA

– mass
∗ atomic
∗ bindingEnergyPerA
∗ betaDecayEnergy
∗ . . .

– nuclearLevels
∗ nuclearLevel

· energy
· half-life
· spin
· parity
· decay, particles such as γ, α, β, etc.
· . . .

∗ nuclearLevel
∗ . . .

sen to make the information accessible for users. More-
over, this way of organizing the data should allow one to
easily select any information needed for one nucleus and
easily integrate it with GND. GND allows evaluators to
use an external database as well as to overwrite individual
structure information.

While the POP database is being designed with evalu-
ated nuclear reaction data in mind, it is also envisioned
as a way to store evaluated nuclear structure data. If
GND requires information beyond what is available in
AME2003 and RIPL-3, then POP will be extended to
provide that information, which may come from other
evaluated libraries.

In the future, POP may also need to be extended by
including other properties of particles, such as atomic
or molecular properties, perhaps by taking advantage
of previous work defining an atomic and molecular
database [23]. Other properties of particles can be in-
tegrated by adding more elements similar to the nucleus
element.

X. CONCLUSION

Nuclear data was one of the earliest fields to take ad-
vantage of the digital computing revolution in the 1950s.
The field has had a long and fruitful history, spurred
along in part by the success and wide-spread adoption of
the ENDF format as a standard way of sharing and using
nuclear data. In the past 50 years, however, computing
technology has seen tremendous growth, while nuclear
data storage has remained relatively unchanged. The

Generalized Nuclear Data (GND) structure has been de-
signed to change this by providing the nuclear data com-
munity with a modern structure that takes advantage of
the improved technologies available today.

For both evaluators and users of nuclear data, GND
offers several advantages over earlier formats. Some of
the most important advantages include:

• arbitrary precision for numeric data (compared to
the 7 digits of precision available using standardized
ENDF format),

• removing the artificial limitations that have been
imposed by the ENDF MT numbers on the number
of discrete reactions allowed in an evaluation,

• support for separating reaction processes, better
representing the physics behind the data and aiding
the manipulation of the data by the evaluator,

• removing redundancies (and the potential for dis-
crepancies) in evaluated data by using names and
links,

• support for storing the evaluated data along with
multiple different forms of derived data, so that the
same tool set can be used to handle both evaluated
and processed nuclear reaction data,

• easy extensibility, so that new types of data can be
added with little effort, and

• a physics-based hierarchy that is easy for a novice
to understand and navigate.

The Fudge infrastructure also provides backwards-
compatibility with ENDF-6, allowing users to translate
data back to ENDF-6 and continue using codes written
for ENDF-6 even after the transition to GND begins.

Initial steps towards adopting GND are already under-
way. In particular, the latest version of the ENDF library
(ENDF/B-VII.1) is already available in GND format, and
the US nuclear data community expects that future ver-
sions of the library will be released in both the ENDF-6
format and GND.

GND is not yet a finished product: the structure is
expected to continue evolving in order to meet the needs
of the nuclear data community. In particular, the new
Working Party on Evaluation Cooperation (WPEC) sub-
group 38 will play an important role in defining the new
structure, and identifying the kinds of nuclear data needs
that are still unmet and should be addressed by GND.
The authors of this paper wish to invite any and all com-
ments from the wider nuclear data community during this
process, to help ensure that GND is a flexible and pow-
erful tool for handling current and future nuclear data
needs.
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